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EFFECTS OF REYNOLDS NUMBER AND MODEL
SUPPORT ON THE SUPERSONIC AERODYNMAIC CHARACTERISTICS

By Charles D. Trescot, Jr., Clarence A. Brown, Jr., and Dorothy T. Howell
Langley Research Center

SUMMARY

An investigation has been made in the Langley Unitary Plan wind tunnel to determine
the effects of Reynolds number and sting-support interference on the static aerodynamic
characteristics of a 140°-inc1uded-angle cone. Base pressures and forces and moments
of the model were measured at Mach numbers of 1,50, 2,00, 2.94, and 4.00 and at ratios
of sting diameter to model diameter that varied from 0.125 to 0.500 through an angle-of-
attack range from about -4° to 13°, The Reynolds number, based on model diameter, was
varied from 1.61 X 105 to 4,15 X 105.

The results of the investigation indicated that, for all sting diameters tested, varia-
tion in test Reynolds number had little or no effect on the static aerodynamic characteristics
of the cone. The main effect of sting diameter occurred at Mach numbers of 1,50 and 2.00
where an increase in sting diameter decreased the base-pressure coefficients and increased
the axial-force coefficients. There were no appreciable effects on base-pressure coef-
ficient or axial-force coefficient due to increasing the ratio of sting diameter to model
diameter at Mach numbers of 2,94 and 4.00.

INTRODUCTION

A number of experimental investigations (refs. 1 to 26) have been made to obtain
data on decelerator-shaped models in support of the Viking mission as well as for landing
missions on other planets. The simultaneous determination of the static stability and
axial-force characteristics for decelerator-shaped models requires precise instrumenta-
tion inasmuch as extremely small normal-force and pitching-moment values occur in
combination with large axial-force values. Accurate measurement of the small normal-
force and pitching-moment values can be impaired when tests are made at low Reynolds
numbers with the resulting low dynamic pressures. In the past, when differences in
experimental results have occurred on similar decelerator-shaped models tested in
different facilities, these differences have been attributed to such factors as Reynolds
number and sting-support interference effects.



The National Aeronautics and Space Administration, therefore, has made an investi-
gation to determine the effects of Reynolds number and sting-support interference on the
static aerodynamic characteristics of a decelerator-shaped model. The tests were made
in the Langley Unitary Plan wind tunnel at Mach numbers of 1.50, 2.00, 2.94, and 4.00
through an angle-of-attack range from about -4° to 13° on a 140°-included-angle cone.
The ratios of sting diameter to model diameter were varied from 0.125 to 0.500 and the
Reynolds number, based on model diameter, was varied from 1.61 x 10° to 4.15 x 105,

SYMBOLS

The longitudinal characteristics of the model are referred to the body-axis system.
The moment reference center is located at the base of the model on the geometric center
line (fig. 1). Values are given in both SI and U.S. Customary Units. The measurements
and calculations were made in the U.S. Customary Units.

C A axial-force coefficient, M
as
C pitching-moment coefficient, Bitching moment
m

qSD

CN normal-force coefficient, w
qS
Cp base-pressure coefficient, Base pressure - Free-stream pressure
q

D diameter of cone, cm (in.)
d sting diameter, cm (in.)
l sting length, cm (in.)
M free-stream Mach number
q free-stream dynamic pressure, kN/m2 (1b /£t2)
R Reynolds number based on D




S reference area (base area of model), 1rD2/4, m2 (ft2)

o’ angle of attack, deg

Sketches of the model and the various sting supports utilized in the investigation
are shown in figure 1 and photographs of the model are shown as figure 2. The 140°0-
included-angle cone was constructed of polished aluminum and had a pointed nose and a
flat base. A short adapter was permanently attached to the base of the cone to house the
balance, and provisions were made to shield the balance from the airstream. Provisions
were also made to support the model with any one of five stings having diameters of
1.52 cm (0.6 in.), 2.54 cm (1.0 in.,), 3.81 cm (1.5 in.), 5.08 cm (2.0 in.), and 6.35 cm
(2.5 in.). The ratios of sting diameter to model diameter (d/D) varied from 0.125 to
0.500 with a constant ratio of sting length to model diameter (/D) of 5.83. (See fig. 1(b).)
Four base-pressure tubes were located at the centroid of area on the base annulus of the
cone at 90° intervals and one tube was attached to the sting inside the balance cavity.

Tunnel

The tests were made in both the low and high Mach number test sections of the
Langley Unitary Plan wind tunnel, which is a variable-pressure, continuous-flow facility
(refs. 27 and 28). The sections are approximately 1.22 m (4 ft) square and 2.13 m (7 ft)
long. The nozzles leading to the test sections are of the asymmetric sliding-block type;
this allows continuous variation in Mach number from about 1.5 to 2.9 in the low Mach
number test section and from about 2.3 to 4.7 in the high Mach number test section.

Tests

For the present tests, the free-stream Mach numbers, stagnation pressures, dynamic
pressures, stagnation temperatures, and Reynolds numbers were as follows:



Stagnation pressure | Dynamic pressure | Stagnation temperature
M R
KN /m2 b/ft2 | kN/m? | 1b/ft2 K OF
1.50 13.790 288 5.916 123.55 338.7 150 2,07 x 105
20.684 432 8.873 185.33 338.7T 150 3.11
27.579 576 11,831 247.10 338.7 150 4.15
2.00 13.790 288 4,935 103.07 338.7 150 1.74 x 10‘5
20.684 432 7.403 154.61 338.7 150 2.60
27.579 576 9.870 206.15 338.7 150 3.47
2.94 | 20.684 432 3.729 | 177.89 338.7 150 1.61x 10°
34.474 720 6.216 129.82 338.7 150 2.68
48.263 1008 8.702 181,74 338.7 150 3.76
4,00 62.053 1296 4,577 95.59 352.6 175 2.63 x 105
89.632 1872 6.611 138.08 352.6 175 3.80

The stagnation dewpoint was maintained sufficiently low (238.7 K (-30° F)) to insure
negligible condensation effects in the test section. The model was mounted on a six-
component, internal, strain-gage balance which was sting supported in the tunnel. Gen-
erally, airplane and missile models use strain-gage balances designed with a large ratio
of normal force to axial force; however, the balance used in this investigation had a large
ratio of axial force to normal force. The maximum design loads of the balance were
44,482 N (10 1b) of normal force, 177.929 N (40 1b) of axial force, and 1.130 m-N (10 in-1b)
of pitching moment. The tests were made through an angle-of-attack range from about
-49 to 139 at a sideslip angle of 0°. All of the tests were made without artificially tripping
the boundary layer.

Corrections and Accuracy

The angles of attack have been corrected for sting and balance deflection due to
aerodynamic loads, and for tunnel airflow misalinement. The axial-force coefficients
have not been adjusted to free-stream conditions acting on the base of the model.

The estimated accuracies of the data, based on calibrations and data repeatability
(1/2 percent of full-scale range), are within the following limits:

=N




M ACyN ACA ACy ACp o, deg
1.50 +0.,0032 +0.0129 +0.0007 +0,0081 +0.10
2,00 +0.0039 +0.0154 +0.0008 +0.0097 +0.10
2,94 +0.0051 | +0.0204 +0,0011 +0.0045 - +0.10
4.00 +0.0042 +0,0166 +0.0009 +0,0037 +0.10

PRESENTATION OF RESULTS

The results of the investigation are presented in the following figures:

Figure

Effect of Reynolds number on the longitudinal aerodynamic characteristics
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DISCUSSION OF RESULTS

The effect of Reynolds number variation on the aerodynamic characteristics of a
140%-included-angle cone for various ratios of sting diameter to model diameter (0.125 to
0.500) is shown in figures 3 to 6 for the test Mach number range. At M = 1,50, increasing
the Reynolds number from 2.07 X 105 to 4.15 X 10° (based on model diameter) showed
little or no effects on the variation of normal-force, axial-force, or pitching-moment
coefficients with angle of attack. Although the variations in Reynolds number had little
or no effects on the pitching-moment data, the pitching~-moment curves exhibited non-
linearities through the test angle-of-attack range. Three separate slopes of the pitching-
moment curves are noted: o = -4%t0 -20, @ = -20162° and @ =2°to 13°. (See
fig. 3.) At M = 2,00, an increase in Reynolds number from 1,74 X 105 to 3.47 x 10° had
effects on the data similar to those at M = 1.50. However, at this Mach number, only two
different slopes of the pitching-moment curves were noted (fig. 4). At M = 2.94 and 4.00
(figs. 5 and 6, respectively), there is little effect on the longitudinal aerodynamic char-
acteristics of the cone due to changes in Reynolds number from 1.6 X 109 to 3.80 x 10°.

At both of these Mach numbers, the pitching-moment curves generally are linear, It
should also be noted that the normal-force coefficient curves are linear throughout the
test angle-of-attack range for all test Mach numbers.

The effects of sting diameter on the longitudinal aerodynamic characteristics of
the 140°-included-angle cone at several test Reynolds numbers for Mach numbers of
1.50, 2.00, 2.94, and 4.00 are presented in figures 7 to 10, respectively. At all test Mach
numbers, these data indicate no significant effects on the normal-force or pitching-
moment characteristics of the model due to increasing the ratios of sting diameter to
model diameter d/D from 0.125 to 0.500. At Mach numbers of 1.50 and 2.00, there is a
noticeable increase in axial-force coefficient in the low angle-of-attack range as d/D
is increased. This effect usually decreases or disappears at angles of attack above about
70, At Mach numbers of 2.94 and 4.00, there is no appreciable effect on axial-force
coefficient due to an increase in d/D up to 0.417. No data were obtained for d/D = 0.500
at these two Mach numbers.

It should be noted that sting length can influence the axial-force values at low angles
of attack. The results of reference 2 indicate that, for a sting mount similar to the
d/D = 0.208 sting of the present study, a sizable reduction in axial-force coefficient at low
angles of attack was obtained at M = 2,30 for a ratio of sting length to model diameter
1/D of 2.0 when compared with the axial-force data for /D = 4.0. This decrease in the
axial-force coefficient for the shorter sting was due to an increase in the base pressure
of the cone which occurred when the shock wave of the sting support interacted with the
trailing shock wave of the cone, This effect, as well as the sting diameter effects of the
present investigation, decreases or disappears near an angle of attack of about 7°. Expe-
rience (refs. 2 and 26) has shown that sting length has an increasing effect on axial-force
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coefficient with a decrease in Mach number; therefore, an arbitrary sting length of 5.83D
was used in the present investigation to minimize these effects.

The effects of the position of the base-pressure tube on the variation of base-pressure
coefficient with angle of attack of the 140°-included-angle cone at several Reynolds num-
bers are shown in figures 11 to 14. At Mach numbers of 1.50 and 2.00 (figs. 11 and 12,
respectively), these data show a higher base pressure on the top pressure tube of the cone
at small positive angles of attack and on the bottom pressure tube at small negative angles
of attack. This probably explains the change in slope of the pitching-moment data in this
angle-of-attack region. These data indicate that there is little or no effect on base-
pressure coefficient with an increase in Reynolds number. The variation in axial-force
coefficient may be determined from the integrated average of these pressures at the
different Reynolds numbers; however, the variation appears to be within the accuracy of
the axial-force measurements inasmuch as little or no change in axial-force coefficient
was noted in figures 3 to 6 due to Reynolds number variation. At the higher test Mach
numbers (M = 2.94 and 4.00), there are essentially no effects of location of the base-
pressure tube or Reynolds number variation on the base-pressure coefficients. (See
figs. 13 and 14.)

The effects of the ratio of sting diameter to model diameter on the variation of
base-pressure coefficient with angle of attack at various base locations for several
Reynolds numbers are shown in figures 15 to 18. Inasmuch as the base-pressure coef-
ficients for the left and right side of the cone are similar, only data for the right side
have been plotted in these figures. At M = 1.50 and 2.00 (figs. 15 and 16, respectively),
these data indicate a decrease in pressure coefficient (more negative) at all locations of
the base-pressure tube as the ratio of the diameters increases at angles of attack up to
about 7°, Above 7° and up to the maximum of the test, the effect of sting diameter on the
base-pressure coefficient decreases. The decrease in base pressures, which occurs
when the sting diameter increases, results in the increase in axial-force coefficient
observed in figures 7 and 8. At M = 2,94 and 4.00, the effect of sting diameter on base-
pressure coefficient is generally small, which corresponds to the small effect of sting
diameter on axial-force coefficient noted in figures 9 and 10.

CONCLUDING REMARKS

An investigation has been conducted in the Langley Unitary Plan wind tunnel to
determine the effects of Reynolds number and sting-support interference on the static
aerodynamic characteristics of a 140°-included-angle cone. Base pressures and forces
and moments of the model were measured at Mach numbers of 1,50, 2,00, 2.94, and 4.00
through an angle-of-attack range from about -4° to 13°, The Reynolds number, based on
model diameter, was varied from 1.61 X 105 to 4.15 X 105. The ratio of sting diameter to
model diameter was varied from 0.125 to 0.500.



The investigation indicated that, for all sting diameters tested, variation in test
Reynolds number had little or no effect on the static aerodynamic characteristics of the
cone. The main effect of sting diameter occurred at Mach numbers of 1.50 and 2.00 where
an increase in sting diameter decreased the base-pressure coefficients and increased the
axial-force coefficients. There were no appreciable effects on base-pressure coefficient

or axial-force coefficient due to increasing the ratio of sting diameter to model diameter
at Mach numbers of 2.94 and 4.00.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., March 13, 1974,
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Figure 1.- Sketches of model, sting supports, and pressure-orifice locations.
All dimensions are in cm (in.).
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(a) d/D =0.208.

(b) d/D = 0.417.

Figure 2.- Photographs of model. L-74-1067




R
‘ : O 20xI® -
PRI NSO R SO A WO o N N 09 4 i
‘ O aBxw
S R NS N N A
| el

- 041

-6 -4 -2 0 2 4 6 8
a, deg

(a) d/D =0.125,

Figure 3.- Effect of Reynolds number on the longitudinal aerodynamic characteristics of
the model for various ratios of sting diameter to model diameter at M = 1.50.

15




2,00 x I

3.0 x 1

O
O

.04

.02

(b) d/D =0.208.

Figure 3.- Continued.

16




hifie
i
i
1

£:

£ : o
ESas: 5 i
EREaEs T
Saaass: L o
R i

Rasasaas o
A3 EEte taasae H
S E3E] SE0E: s
i i 7

(¢) d/D =0.312

inued

Figure 3.- Cont

17




18

.04

.02

FLELSEL N M RIS MM MBS

R i

H

O 20x1¢ i
O 30xI0

i

T BB A e S
R
Bl it b

0 Hih e
i

by
T

(d) d/D =0.4117.

Figure 3.- Continued.




0
8
6
4
2
0
8
6
4
2
0

2.00 x 10

@)

g

de

=0.500.

d/D

(e)

Figure 3.- Concluded.

19




04 B A G i e
BH e o 8 i R I 0 T R K
1.74 x 1 |
02 T i 260x10 |
- el e
Cm 0 ;

T

14

a, deg

(a) d/D =0.125,

Figure 4.- Effect of Reynolds number on the longitudinal aerodynamic characteristics of
the model for various ratios of sting diameter to model diameter at M = 2.00.
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the model for various ratios of sting diameter to model diameter at M
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a,deg

(a) R=2.07Tx 105.

Figure 7.- Effect of sting diameter on the longitudinal aerodynamic characteristics
of the model for three Reynolds numbers at M = 1,50.
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Figure 7.- Continued.

a, deg

(b) R =3.11x 109,




.04

. 02 ”'

a, deg

(c) R=4.,15% 105.

Figure 7.- Concluded.
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a, deg

(a) R =1.74 x 109,

Figure 8.- Effect of sting diameter on the longitudinal aerodynamic characteristics
of the model for three Reynolds numbers at M = 2.00.




a, deg

(b) R = 2.60 x 10°,

Figure 8.- Continued.
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Figure 8.- Concluded.
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(3 R=1.61x10°,
Figure 9.- Effect of sting diameter on the longitudinal aerodynamic characteristics
of the model for three Reynolds numbers at M = 2,94,
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Figure 9.- Continued.
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a, deg

(¢) R=3.76X 105.

Figure 9.- Concluded.
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a, deg

(a) R=2.63x% 105.

Figure 10.- Effect of sting diameter on the longitudinal aerodynamic characteristics
of the model for two Reynolds numbers at M = 4.00,
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Figure 10.- Concluded.
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(a) d/D =0.125,

Figure 11.- Effect of base position on the variation of base-pressure coefficient with
angle of attack for various ratios of sting diameter to model diameter at M = 1.50.
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Figure 11.- Continued.
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a, deg

(e) d/D = 0.500.

Figure 11.- Concluded.
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(a) d/D = 0.125,

Figure 12.- Effect of base position on the variation of base-pressure coefficient with
angle of attack for various ratios of sting diameter to model diameter at M = 2.00.
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Figure 12.- Continued.
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Figure 12.- Concluded.
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Figure 13. - Effect of base position on the variation of base-pressure coefficient with
angle of attack for various ratios of sting diameter to model diameter at M = 2,94,
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a,deg

() R =2.07x10°.

Figure 15.- Effect of sting diameter on the variation of base-pressure coefficient with
angle of attack for three Reynolds numbers at M = 1,50,
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(c) R=4.,15x% 105.

Figure 15.- Concluded.
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a,deg

(a) R=1.74x10°,

16.- Effect of sting diameter on the variation of base-pressure coefficient with
angle of attack for three Reynolds numbers at M = 2.00.
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a, deg

(¢) R=3.47 x 10°.

Figure 16.- Concluded.
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q,. deg

(a) R=1.61x 10°,

Figure 17. - Effect of sting diameter on the variation of base-pressure coefficient with

angle of attack for three Reynolds numbers at M = 2.94.
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(b) R =2.68X 105.

Figure 17.- Continued.
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a, deg

() R=3.76 % 10°.

Figure 17.- Concluded.




(@) R =2.63x 10°,

Figure 18.- Effect of sting diameter on the variation of base-pressure coefficient with
angle of attack for two Reynolds numbers at M = 4.00.
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(b) R = 3.80 X 105.

Figure 18.- Concluded.
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